Simulasi Pengaruh Variasi Kecepatan Aliran Laminar Elektrolit Terhadap Performa Soluble Lead-Acid Redox Flow Battery (SLFB)

Nikita Syaharani, muhammad ghufron, Satria Pamungkas Panji Kumara, Irfan Fajar Hidayah, Silvi Hadila, Ervinka Felindia, Mauludi Ariesto Pamungkas, Kurriawan Budi Pranata

Abstract


Pemenuhan pasokan energi listrik baru terbarukan membutuhkan media penyimpanan energi dalam skala besar. Soluble Leas Acid Flow battery (SLFB) merupakan salah satu jenis baterai sekunder yang memnuhi kriteria tersebut. Simulasi sel tunggal SLFB model 2D dengan memvariasikan kelajuan aliran laminar elektrolit sebesar 0,025 m/s (SLFB1), 0,075 m/s (SLFB2), 0,1 m/s (SLFB3), dan 0,2 m/s (SLFB4) menggunakan software COMSOL Multyphysics 5.1 telah berhasil dilakukan. Pada simulasi ini digunakan densitas arus tetap 300 A/m2 selama pengisian 4 jam dan pengosongan 4 jam dengan istirahat selama 1 menit. Hasil simulasi ini menunjukkan bahwa peningkatan kecepatan aliran laminar elektrolit pada SLFB mampu menurunkan nilai tegangan pengisian (charge) dan meningkatkan nilai tegangan pengosongan (discharge). Kecepatan aliran laminar elektrolit pada SLFB tidak berpengaruh terhadap nilai konsentrasi PbO2 dan PbO pada permukaan elektroda positif selama pengisian-pengosongan baterai. Dengan menaikkan kelajuan aliran laminar elektrolit SLFB dapat meningkatkan nilai efisiensi energinya pada range 72,8% - 73,3%. SLFB4 merupakan baterai dengan performa terbaik berdasarkan performa tegangan dan efisiensinya.

References


BP, “Statistical Review of World Energy globally consistent data on world energy markets .,†p. 66, 2020, [Online]. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf.

BPPT, Indonesia Energy Outlook 2020 - Special Edition Dampak Pandemi COVID-19 terhadap Sektor Energi di Indonesia. 2020.

IESR, “Sustainable electricity access for rural communities: Status, Challenges, and Opportunities,†Pojok Energi - Seri Disk., p. 11, 2019, [Online]. Available: http://iesr.or.id/wp-content/uploads/2019/05/Proceeding-PE-11.pdf.

C. Ponce de León, A. Frías-Ferrer, J. González-García, D. A. Szánto, and F. C. Walsh, “Redox flow cells for energy conversion,†J. Power Sources, vol. 160, no. 1, pp. 716–732, 2006, doi: 10.1016/j.jpowsour.2006.02.095.

A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, and Q. Liu, “Redox flow batteries: A review,†J. Appl. Electrochem., vol. 41, no. 10, pp. 1137–1164, 2011, doi: 10.1007/s10800-011-0348-2.

N. Khairati, M. Ghufron, and K. B. Pranata, “Optimasi Kapasitas Baterai Dinamis Asam Timbal (Redox Flow Battery),†SMARTICS J., vol. 4, no. 2, pp. 44–48, 2018, doi: 10.21067/smartics.v4i2.2666.

E. J. Fraser, K. K. J. R. Dinesh, and R. G. A. Wills, “Development of a two-dimensional, moving mesh treatment for modelling the reaction chamber of the soluble lead flow battery as a function of state of charge for Pb and PbO2 deposition and dissolution,†J. Energy Storage, vol. 31, no. January, p. 101484, 2020, doi: 10.1016/j.est.2020.101484.

Y. Yu, Y. Song, and J. Mao, “Quantitative analysis of the material, energy and value flows of a lead-acid battery system and its external performance,†Sci. Total Environ., vol. 688, pp. 103–111, 2019, doi: 10.1016/j.scitotenv.2019.06.169.

M. Nandanwar and S. Kumar, “A modelling and simulation study of soluble lead redox flow battery: Effect of presence of free convection on the battery characteristics,†J. Power Sources, vol. 412, no. October 2018, pp. 536–544, 2019, doi: 10.1016/j.jpowsour.2018.11.070.

S. Hadila et al., “Simulasi Pengaruh Luas Permukaan Elektroda Terhadap Tegangan Dan Konsentrasi Permukaan Elektroda Pada Lead Acid Redox Flow Battery,†vol. 14, no. April, pp. 12–17, 2021.

C. P. Zhang, S. M. Sharkh, X. Li, F. C. Walsh, C. N. Zhang, and J. C. Jiang, “The performance of a soluble lead-acid flow battery and its comparison to a static lead-acid battery,†Energy Convers. Manag., vol. 52, no. 12, pp. 3391–3398, 2011, doi: 10.1016/j.enconman.2011.07.006.

M. N. Nandanwar and S. Kumar, “Modelling of Effect of Non-Uniform Current Density on the Performance of Soluble Lead Redox Flow Batteries,†J. Electrochem. Soc., vol. 161, no. 10, pp. A1602–A1610, 2014, doi: 10.1149/2.0281410jes.

S. Laestander, “Battery-and Degradation Modeling of Hybrid Electric Heavy-Duty Long Hauler,†2017.

R. Dini Barkah, “Simulasi Charge Discharge Model Baterai Lead Acid,†J. Ilmu dan Inov. Fis., vol. 3, no. 2, pp. 128–134, 2019, doi: 10.24198/jiif.v3i2.23257.

A. Bates, S. Mukerjee, S. C. Lee, D. H. Lee, and S. Park, “An analytical study of a lead-acid flow battery as an energy storage system,†J. Power Sources, vol. 249, pp. 207–218, 2014, doi: 10.1016/j.jpowsour.2013.10.090.

M. Hadi, A. J. Bard, L. R. Faulkner, E. Methods, and S. Elektrokimia, “Analisa Dinamika Difusi Ionik ∗,†pp. 1–20, 2006.

A. A. Shah, X. Li, R. G. A. Wills, and F. C. Walsh, “A Mathematical Model for the Soluble Lead-Acid Flow Battery,†J. Electrochem. Soc., vol. 157, no. 5, p. A589, 2010, doi: 10.1149/1.3328520.

A. Basuki and N. Ramadijanti, Metode Numerik dan Algoritma Komputasi. Yogyakarta: Andi, 2005.

M. Ghufron, I. Istiroyah, C. A. Perwita, L. Gobay, F. R. Ramadhan, and K. B. Pranata, “Studi Kelajuan Elektrolit Terhadap Kapasitas Baterai Dinamis Asam Timbal Sel Tunggal,†Pros. SNFA (Seminar Nas. Fis. dan Apl., vol. 5, pp. 148–156, 2020, doi: 10.20961/prosidingsnfa.v5i0.46605.

V. L. Streeter, E. B. Wylie, and A. Prijono, Mekanika Fluida : Jilid I. Jakarta: Erlangga, 1992.

M. Davids, R. Neff, K. Wedding, and P. Zitzewitz, Merril Physical Science Teacher Wraparound Edition. NewYork: GLENCOE McGraw-Hill., 1995.

M. Ghufron, K. B. Pranata, I. Istiroyah, M. Yusmawanto, and C. A. Perwita, “Charging time influence on dynamic lead acid battery capacity with H2SO4 electrolyte,†AIP Conf. Proc., vol. 2021, no. October 2018, 2018, doi: 10.1063/1.5062756.




DOI: https://doi.org/10.32486/jeecae.v6i1.803

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JEECAE (Journal of Electrical, Electronics, Control, and Automotive Engineering)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 COPYRIGHT is based on (CC-SA) CREATIVE COMMONS Licenses ShareAlike