Analisis Performa Kendaraan Konversi Internal Combustion Engine (ICE) Menjadi Kendaraan Listrik

Authors

  • DZAKWAN AVRILDETZA ANJABTUKO UNIVERSITAS PENDIDIKAN INDONESIA
  • Ramdhani, S.Pd., M.Eng.

Keywords:

electric vehicle conversion, PMSM, energy efficiency, ICE, drive system

Abstract

The transition from Internal Combustion Engine (ICE) vehicles to electric-powered alternatives is recognized as a crucial initiative to support environmentally sustainable transportation systems and reduce greenhouse gas emissions. This study focuses on assessing the performance and suitability of a Permanent Magnet Synchronous Motor (PMSM) as the primary drive mechanism in a vehicle retrofitted from an ICE-based system. A combination of literature analysis, field inspections, and technical evaluations was employed to examine several key parameters, including motor output, battery capacity and resilience, projected driving distance, and required charging time. Test results indicate that the PMSM produced a torque of 110 Nm and a power output of 70.45 PS—slightly lower than the original ICE engine’s torque of 118.6 Nm and 86 PS of power. The 15.85 kWh LiFePO₄ battery demonstrated exceptional energy efficiency at 98%, supporting a continuous operational time of 1.55 hours and a travel range of approximately 42.6 kilometers. Charging the battery to full capacity took about 1.29 hours. While a modest decline in power output was observed compared to the ICE system, the electric drivetrain exhibited high efficiency and consistent performance. These empirical findings serve as a valuable reference for advancing the implementation of effective and practical electric vehicle conversion technologies in future mobility solutions.

References

Biro Komunikasi dan Informasi Publik, “Menhub: Ekosistem Kendaraan Listrik Butuh Kolaborasi,” Apr. 30, 2024. [Online]. Available: https://www.dephub.go.id/post/read/menhub--ekosistem-kendaraan-listrik-butuh-kolaborasi. [Accessed: May 31, 2025].

F. R. Fiantika, M. Wasil, S. Jumiyati, L. Honesti, S. Wahyuni, E. Mouw, et al., *Metodologi Penelitian Kualitatif*. Padang: PT. Global Eksekutif Teknologi, 2022.

givenergy.co.uk, “What is round trip efficiency in battery storage?,” Jan. 30, 2024. [Online]. Available: https://givenergy.co.uk/what-is-round-trip-efficiency-in-battery-storage/. [Accessed: May 30, 2025].

HYUNDAI ENGINE BUSINESS TEAM, *HYUNDAI ENGINE IS YOUR KEY TO SUCCESS*. Seoul: HYUNDAI, n.d.

J. Larminie and J. Lowry, *Electric Vehicle Technology Explained*, 2nd ed. Chichester: John Wiley & Sons Ltd., 2012.

D. I. MT, M. Legisnal Hakim ST, and M. Ir. Denur, “Desain Pengganti Penggerak Motor Bakar Torak (110 CC) pada Sepeda Motor Otomatic dengan Motor Listrik Type BLDC (Brushless DC),” *Surya Teknika*, vol. 9, pp. 512–524, 2022.

Pemerintah Republik Indonesia, *Peraturan Menteri Perhubungan Republik Indonesia Nomor PM 65 Tahun 2020 Tentang Konversi Sepeda Motor Dengan Penggerak Motor Bakar Menjadi Sepeda Motor Listrik Berbasis Baterai*, 2020. [Online]. Available: https://peraturan.bpk.go.id/Details/169075/permenhub-no-65-tahun-2020. [Accessed: May 30, 2025].

Presiden Republik Indonesia, *Peraturan Presiden Republik Indonesia Nomor 55 Tahun 2019 Tentang Percepatan Program Kendaraan Bermotor Listrik Berbasis Baterai (Battery Electric Vehicle) Untuk Transportasi Jalan*, 2019. [Online]. Available: https://peraturan.bpk.go.id/Details/116973/perpres-no-55-tahun-2019. [Accessed: May 28, 2025].

A. Rizky, A. Rakhman, S. Maulana, N. Fath, and Sujono, “Perancangan Mobil Listrik Menggunakan Motor DC Brushed 36 Volt 450 Watt,” *KILAT*, pp. 10–20, 2022.

F. F. Sena Mahendra, “Analisis Performa pada Sepeda Motor Listrik Menggunakan Motor BLDC 500 W,” *Jurnal Rekayasa Mesin*, pp. 340–352, 2024.

Y. Setiawan and M. Farid, “Integration of Electric Drive Systems in ICE to EV Conversion: A GT-Suite Approach,” *Cylinder: Jurnal Ilmiah Teknik Mesin*, pp. 8–16, 2024.

I. Viantama and B. M. Suyitno, “Analisis Perbandingan Sistem Kinerja Motor Penggerak Pada Mobil Listrik Kapasitas 75 kWh,” *Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa Dan Inovasi*, pp. 157–164, 2021.

VOLKSWAGEN AG, *Self-study Programme 212 Variable Intake Manifold in VR Engines*. Wolfsburg: VOLKSWAGEN AG, n.d.

M. Zaenuddin, “Ambisi Indonesia Percepat Pengembangan Mobil Listrik,” Nov. 2, 2021. [Online]. Available: https://katadata.co.id/analisisdata/619b5947b8266/pengembangan-mobil-listrik-indonesia. [Accessed: May 28, 2025].

M. Zed, *Metode Penelitian Kepustakaan*. Jakarta: Yayasan Obor Indonesia, 2008.

Zhejiang Dayai New Energy Co. LTD., *Zhejiang Dayai New Energy CO., LTD. Product Catalog*. Zhejiang: Zhejiang Dayai New Energy Co. LTD., n.d.

I. Zidni, “Analisis Efisiensi Pengisian Muatan Baterai Lithium Iron Phosphate (LiFePO4),” Unpublished undergraduate thesis, Universitas Islam Indonesia, 2020.

F. Zainuri, D. A. Zainuri, M. F. Zainuri, D. A.S., M. A. Prasetyo, Widiyatmoko, et al., “Analisis Kinerja Konversi Kendaraan Konvensional Ke Listrik,” *Prosiding Seminar Nasional Teknik Mesin*, pp. 48–54, 2020.

Downloads

Published

2025-10-02

How to Cite

ANJABTUKO, D. A., & Ramdhani, S.Pd., M.Eng. (2025). Analisis Performa Kendaraan Konversi Internal Combustion Engine (ICE) Menjadi Kendaraan Listrik. JEECAE (Journal of Electrical, Electronics, Control, and Automotive Engineering), 10(2), 1–7. Retrieved from https://journal.pnm.ac.id/index.php/jeecae/article/view/910